Oncolytic reovirus preferentially induces apoptosis in KRAS mutant colorectal cancer cells, and synergizes with irinotecan
نویسندگان
چکیده
Reovirus is a double stranded RNA virus, with an intrinsic preference for replication in KRAS mutant cells. As 45% of human colorectal cancers (CRC) harbor KRAS mutations, we sought to investigate its efficacy in KRAS mutant CRC cells, and examine its impact in combination with the topoisimerase-1 inhibitor, irinotecan. Reovirus efficacy was examined in the KRAS mutant HCT116, and the isogenic KRAS WT Hke3 cell line, and in the non-malignant rat intestinal epithelial cell line. Apoptosis was determined by flow cytometry and TUNEL staining. Combination treatment with reovirus and irintoecan was investigated in 15 CRC cell lines, including the HCT116 p21 isogenic cell lines. Reovirus preferentially induced apoptosis in KRAS mutant HCT116 cells compared to its isogenic KRAS WT derivative, and in KRAS mutant IEC cells. Reovirus showed a greater degree of caspase 3 activation with PARP 1 cleavage, and preferential inhibition of p21 protein expression in KRAS mutant cells. Reovirus synergistically induced growth inhibition when combined with irinotecan. This synergy was lost upon p21 gene knock out. Reovirus preferentially induces apoptosis in KRAS mutant colon cancer cells. Reovirus and irinotecan combination therapy is synergistic, p21 mediated, and represents a novel potential treatment for patients with CRC.
منابع مشابه
Reovirus Oncolysis - Role of cyclin-dependent kinase inhibitor 1
New therapeutic interventions are essential for improved cancer management. Over the past decade, reovirus, a naturally-occurring oncolytic double-stranded RNA virus harboring an intrinsic preference to destroy mutant KRAS driven tumors, has shown novel promissory potential. The fact that more than 30-40% of human tumors harbor KRAS mutations had previously guided us to investigate the efficacy...
متن کاملAnti-DLL4 inhibits growth and reduces tumor-initiating cell frequency in colorectal tumors with oncogenic KRAS mutations.
KRAS mutations are frequent in colorectal cancer (CRC) and are associated with clinical resistance to treatment with the epidermal growth factor receptor (EGFR)-targeted monoclonal antibodies. Delta-like 4 ligand (DLL4) is an important component of the Notch signaling pathway and mediates stem cell self-renewal and vascular development. DLL4 inhibition in colon tumor cells reduces tumor growth ...
متن کاملRAF suppression synergizes with MEK inhibition in KRAS mutant cancer cells.
KRAS is the most frequently mutated oncogene in human cancer, yet no therapies are available to treat KRAS mutant cancers. We used two independent reverse genetic approaches to identify components of the RAS-signaling pathways required for growth of KRAS mutant tumors. Small interfering RNA (siRNA) screening of 37 KRAS mutant colorectal cancer cell lines showed that RAF1 suppression was synthet...
متن کاملReovirus oncolysis: a brief insight on molecular mechanism and immunological aspect
Abstract : Reovirus (respiratory enteric orphan virus), a naturally occurring benign human pathogen, has an inherent ability to target transformed and cancerous cells and cause their lysis, while leaving non-transformed cells relatively unaffected. The efficiency of this innate oncolytic activity of reovirus correlates with expression of the ras oncogene. Cells expressing ac...
متن کاملThe Effect of Autophagy Induction in Oncolytic Reovirus Replication in Mesenchymal Stem Cells
Background and Aims: Oncolytic reoviruses can infect and kill malignant cells while sparing their normal counterparts. Reoviral infection can induce or activate autophagy, even though metformin can induce autophagy. Identifying and regulating the cellular pathways important for reovirus replication and oncolysis can improve targeted-biological therapies for cancer. Here, the autophagic process ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2014